
Preliminary Investigation of a Bayesian Network
for Mammographic Diagnosis of Breast Cancer

Charles E. Kahn, Jr., M.D., Linda M. Roberts, M.S., Kun Wang, B.S.,
Deb Jenks, M.S.N., Peter Haddawy, Ph.D.

The Medical Informatics and Decision Science (MIDAS) Consortium, Milwaukee, Wisconsin*

Bayesian networks use the techniques ofprobability
theory to reason under conditions of uncertainty. We
investigated the use of Bayesian networks for
radiological decision support. A Bayesian network
for the interpretation of mammograms (MammoNet)
was developed based on five patient-historyfeatures,
two physical findings, and 15 mammographic
features extracted by experienced radiologists.
Conditional-probability data, such as sensitivity and
specificity, were derivedfrom peer-reviewed journal
articles andfrom expert opinion. In testing with a set
of 77 casesfrom a mammography atlas and a clinical
teaching file, MammoNet performed well in
distingWushing between benign and malignant lesions,
and yielded a value of 0.881 (± 0.045) for the area
under the receiver operating characteristic curve.
We conclude that Bayesian networks provide a
potentially useful tool for mammographic decision
support.

INTRODUCTION

In 1995, an estimated 183,400 women in the United
States will be newly diagnosed with breast cancer,
and 46,240 will die of the disease [1]. Screening
mammography effectively detects early breast
cancers and can increase the likelihood of cure and
long-term survival [2]. Differentiating between
benign and malignant mammographic findings,
however, is difficult. Only 15%-30% of biopsies
performed on nonpalpable but mammographically
suspicious lesions prove malignant [3]. Automated
classification of mammographic findings using
discriminant analysis and artificial neural networks
has indicated the potential usefulness of computer-
aided diagnosis [4,5].

We explored the use of Bayesian networks as a
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diagnostic decision aid in mammography. Bayesian
networks-also called belief networks or causal
probabilistic networks-use probability theory as a
formalism for reasoning under conditions of
uncertainty [6,7]. Bayesian networks can express the
relationships between diagnoses, physical findings,
laboratory test results, and imaging study findings. In
radiology, Bayesian networks have been applied to
the diagnosis of liver lesions on MR images [8] and
to the selection of imaging procedures for patients
with suspected gallbladder disease [9].

Bayesian networks are directed acyclic graphs: they
are "directed" in that the connections between nodes
are "one-way," and they are "acyclic" because they
cannot include loops. Each node represents a
variable and has two or more possible states. For
example, the variable "Breast Cancer" has two states:
"present" and "absent." For each node, the
probability values associated with the states sum to 1.
The connections between variables represent direct
influences, expressed as conditional probabilities
such as sensitivity and specificity.

METHODS

We created a Bayesian network model of breast
cancer diagnosis, called MammoNet, that
incorporates five patient-history features, two
physical findings, and 15 mammographic findings.
The model assumes that all of the evidence pertains
to one particular site identified by mammography.
MammoNet infers the posterior probability of breast
cancer at that site based on the available evidence.

Four of the patient-history features influence the
presence of breast cancer, which in turn influences
the presence of the physical findings and
mammographic findings (Figure 1). The
mammographic findings are divided into direct
manifestations of malignancy, such as mass or
calcification, and indirect signs, such as architectural
distortion. One of the patient-history factors, that of a
prior biopsy, serves as a competing cause of the
mammographic finding of architectural distortion.
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The nodes and their states are described in Table 1.
Wherever possible, we used standardized
terminology as proposed in the American College of
Radiology's Breast Imaging Reporting and Data
Systems (BIRADS) lexicon [10]. MammoNet's
knowledge base was constructed from the peer-
reviewed medical literature, census data, and health
statistics reports. When required probability data
were unavailable or the sample size too small, we
obtained estimates from an expert mammographer.

Mammographically detectable mass and calcification
are modeled as conditionally independent
manifestations of malignancy. The Mass and
Calcification nodes have three states: "malignant,"
"benign," and "none." If no mass is evident, for
example, the Mass Present node is set to "no", which
forces the Mass node to the state "none" and nodes
such as Mass Margin to the state "not applicable"
(NA). The Mass Present node allows one to express
uncertainty regarding the presence of mass
independently of the descriptive features. The
mammographic features of a mass (Mass Margin,
Mass Density, etc.)-although conditionally

independent of Breast Cancer given Mass-affect the
diagnosis by their influence on the Mass node's
"malignant" and "benign" states. The model treats
Calcification and its related nodes in similar fashion.

We used the Bayesian Network Generator (BNG)
system [11,12] to generate a Bayesian network model
from a set of probabilistic rules. Inference (i.e.,
calculation of posterior probabilities) was performed
using the public-domain IDEAL system [13] on a
DEC 5000/240 computer (Digital Equipment Corp.,
Maynard, MA).

To test MammoNet, we encoded 67 cases from a
mammography atlas [14] and 10 cases from a clinical
teaching file. Each case included clinical data, the
mammographic findings, the expert mammographer's
diagnosis, and the histological diagnosis based on
clinical follow-up and/or biopsy results. The atlas
provided a set of relatively straightforward cases; the
clinical teaching file contained cases considered
diagnostically challenging. Of the 77 cases, 25 were
positive for breast cancer.

Figure 1. Topology of MammoNet's network model for mammographic diagnosis. The Breast Center, Mass, and
Calcification nodes are inferred, and do not receive direct input from the user.
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Table 1. Definitions of MammoNet's nodes and their states. NA = not applicable.

RESULTS

MammoNet computed the posterior probability of
breast cancer given each case's constellation of
demographic, clinical, and mammographic features.
For example, case #32 from the atlas described a
known malignancy in a 65-year-old woman with an
irregular, low-density mass, no halo sign, and no

calcifications; MammoNet calculated a probability
of breast cancer of 99.6%. Analysis using the
LABROC1 program [15] yielded an estimated area

under the receiver operating characteristic (ROC)
curve of 0.881 ± 0.045 (Figure 2).

At a probability threshold for breast cancer of 15%
(which approximates the positive predictive value of
mammographic suspicion), MammoNet correctly
identified 23 of the 25 actually positive cases

(sensitivity, 92.0%; 95% confidence interval [CI],
75.0% to 97.8%). MammoNet's specificity at this
threshold was 88.5% (95% CI, 77.0% to 94.6%).
Three benign lesions that MammoNet falsely
identified as positive were considered suspicious by
the mammographers and were referred for biopsy.

False-positive fraction (FPF)

Figure 2. Receiver operating characteristic (ROC)
curve for MammoNet.
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Category Node States
DLAGNOSIS Breast Cancer present, absent
HISTORY Age (years) 20-24, 25-29, ..., 75-79

Age at Menarche (years) <12, 12-13, 214
Age at First Live Birth (years) <20, 20-24, 25-29, 230
Number of First-Degree Relatives with Breast 0, 1, 2

Cancer
Previous Biopsy yes, no

PHYSICAL Pain present, absent
FINDINGS Nipple Discharge present, absent
INDIRIcT Architectural Distortion present, absent
MAMMOGRAPC Asymmetry present, absent
FINDINGS Developing Density present, absent
DIREcr Mass malignant, benign, none
MAMMOGRAPHIC Mass Present yes, no
FNDINGS Mass Margin spiculated, irregular, relatively well defined,

NA
Mass Density high, low, NA
Halo Sign present, absent, NA
Tumor Location upper outer, upper inner, lower outer, lower

inner, retroareolar, NA
Calcification malignant, benign, none
Calcification Present yes, no
Calcification Cluster Shape punctate, round, linear, variable, NA
Number of Calcifications in Cluster .5, 6-10, 11-15, 16-25, 26-50, >50, NA
Calcification Shape linear branching, irregular, indeterminate,

round, NA
Calcification Density 1-2, 1-3, 2-3, 3-4, NA
Calcification Arrangement scattered, clustered, scattered&clustered,

single, NA
Calcification Size (mm) 0.05-0.1, 0.05-0.2, 0.01-1, 0.01-2, 1-3, NA



DISCUSSION

Bayesian networks represent a promising technique
for clinical decision support and provide a number of
powerful capabilities for representing uncertain
knowledge. They provide a flexible representation
that allows one to specify dependence and
independence of variables in a natural way through
the network topology. Because dependencies are
expressed qualitatively as links between nodes, one
can structure the domain knowledge qualitatively
before any numeric probabilities need be assigned.
The graphical representation also makes explicit the
structure of the domain model: a link indicates a
causal relation or known association. The encoding
of independencies in the network topology admits the
design of efficient procedures for performing
computations over the network. A further advantage
of the graphical representation is the perspicuity of
the resulting domain model. Finally, since Bayesian
networks represent uncertainty using standard
probability, one can collect the necessary data for the
domain model by drawing directly on published
statistical studies.

MammoNet's performance-as measured by its area
under the ROC curve (Az)-compares very favorably
with that of artificial neural network (ANN) models
and expert mammographers. An ANN with 14 input
features achieved an Az value of 0.89 (vs. 0.84 for
attending radiologists) [5] on cases from the same
mammography atlas as used in this study [14].
ANNs learn directly from observations, but cannot
meaningfully explain their decisions. Their
knowledge consists of an "impenetrable thicket" of
numerical connection values. The ability of Bayesian
networks to explain their reasoning [16,17] in an
important advantage over ANNs; physicians
generally will not accept and act on a computer
system's advice without knowing the basis for the
system's decision [18].

Another computer-assisted decision aid for
mammographic interpretation included a checklist of
12 features determined to have particular diagnostic
value [19]. Given a quantitative assessment of the 12
features, the decision aid estimated the probability of
malignancy using weighting factors obtained from
discriminant analysis. ROC analysis of this model
showed a gain of about 0.05 in sensitivity or
specificity when the other value remained constant at
0.85.

The ongoing refinement of MammoNet includes
adding variables and states to the model, acquiring
conditional-probability data from large case series,
and rigorous testing and evaluation. We are
converting the system to run using the Hugin
inference system [20]. We are considering the
addition of demographic features such as race and
geographic location, and patient-history features such
as diet, body habitus, history of hormone therapy, and
previous cancers. The granularity of the model's
variables could be increased by partitioning the
Breast Cancer node into more than the current two
states to represent the numerous types of cancer and
benign conditions. We are developing links between
MammoNet and a database to allow collection and
analysis of a large set of clinical cases. Our goal is to
create a decision support tool to improve the
diagnostic accuracy and cost-effectiveness of
screening mammography. Such a decision aid must
be reliable, integrated with a clinical database and
reporting system, and able to generate explanations to
the physicians who use it.
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